Periodic Mesoporous Organosilicas
Preparation, Properties and Applications
Gebonden Engels 2018 9789811329586Samenvatting
This book provides a comprehensive overview of the fundamental properties, preparation routes and applications of a novel class of organic–inorganic nanocomposites known as periodic mesoporous organosilicas (PMOs).
Mesoporous silicas are amorphous inorganic materials which have silicon and oxygen atoms in their framework with pore size ranging from 2 to 50 nm. They can be synthesized from surfactants as templates for the polycondensation of various silicon sources such as tetraalkoxysilane. In general, mesoporous silica materials possess high surface areas, tunable pore diameters, high pore volumes and well uniformly organized porosity. The stable chemical property and the variable ability for chemical modification makes them ideal for many applications such as drug carrier, sensor, separation, catalyst, and adsorbent. Among such mesoporous silicas, in 1999, three groups in Canada, Germany, and Japan independently developed a novel class of organic–inorganic nanocomposites known as periodic mesoporous organosilicas (PMOs). The organic functional groups in the frameworks of these solids allow tuning of their surface properties and modification of the bulk properties of the material.
The book discusses the properties of PMOs, their preparation, different functionalities and morphology, before going on to applications in fields such as catalysis, drug delivery, sensing, optics, electronic devices, environmental applications (gas sensing and gas adsorption), biomolecule adsorption and chromatography. The book provides fundamental understanding of PMOs and their advanced applications for general materials chemists and is an excellent guide to these promising novel materials for graduate students majoring in chemical engineering, chemistry, polymer science and materials science and engineering.
Specificaties
Lezersrecensies
Inhoudsopgave
<p>2.1.1. Sol-gel Method</p>
<p>2.1.2. Template Assisted Technique</p>
2.1.3. Liquid Crystal Template Approach (LCTA) <p></p>
<p>2.1.4. Microwave Assisted Technique </p>
<p>2.1.5. Chemical Etching Technique </p>
<p>2.2. Templates</p>
<p>2.3. Basic and Acidic Synthesis</p>
<p>2.3.1. Basic Condition</p>
<p>2.3.2. Acidic Condition</p>2.4. Temperature<p>2.5. Removal of Template</p>
<p>2.6. Nonaqueous Synthesis</p>
<p>2.7. Mesophase Tailoring</p>
<p>2.7.1 Micellar Mesostructure.</p>
2.7.1.1. Critical Micelle Concentration<p></p>
<p>2.7.1.2. The Packing Parameter</p>
<p>2.7.1.3. The Hydrophilic/Hydrophobic Volume Ratio </p>
<p>2.7.1.4. Surfactant Phase Diagram.</p>
<p>2.7.2. 2-Dimensional (2D) Mesostructures.</p>
<p>2.7.3. 3-Dimensional (3D) Mesostructures.</p><p>2.7.3.1. Bicontinuous Cubic Mesostructures</p>
<p>2.7.3.2. Cage-type Mesostructures.</p>
<p>2.7.4. Lamellar and Disordered Mesostructures</p>
<p>2.7.5. Other Mesostructures.</p>
<p>2.8. Morphology Control of Mesoporous Silica</p>2.9. Modification of Mesoporous Silica<p>2.9.1. Modification of Nanoparticles Inside Mesoporous Silica</p>
2.9.2. Organic Modification on the Pore Surface of Mesoporous Silica<p></p>
<p>2.9.2.1. Grafting Method</p>
<p>2.9.2.2. Co-condensation Method</p>
<p>2.10. Application of Mesoporous Silica</p><p></p>
<p>2.11. Periodic Mesoporous Organosilicas (PMOs)</p>
<p>Chapter 3. Synthetic Routes and New Precursors for the Preparation of PMOs</p>
<p>3.1. Synthetic Pathways of PMOs</p><p></p>
<p>3.2. Precursors for the Preparation of PMOs</p><p></p>
<p>3.2.1. Amorphous Precursors</p>
<p>3.2.1.1. Long Chain and Cyclic Moieties Bridged PMO Precursors</p>
<p>3.1.1.4. Bis-silylate Chiral Precursors</p>
<p>3.2.1.3. Metal Complexes Included in PMO Materials. </p>
<p>3.2.2. Crystalline Precursors</p>
<p>Chapter 4. PMOs with a Range of Morphologies</p>
<p>4.1. Powder or Monolith Morphologies</p>
<p>4.2. Hollow Morphology</p><p></p>
<p>4.3. Film Morphology</p>
<p>Chapter 5. PMOs for Catalytic Applications</p>
<p>5.1. Organic Group Functionalized PMO Materials</p>
<p>5.2. Metal Complex Functionalized PMOs</p>5.2.1. Pd Complex Functionalized PMOs<p>5.2.2. Ru Complex Functionalized PMOs</p>
<p>5.2.3. Pt Complex Functionalized PMOs</p>
<p>5.2.4. V Complex Functionalized PMOs</p>
<p>5.2.5. Ir Complex Functionalized PMOs</p>
<p>5.2.6. Mn Complex Functionalized PMOs</p>
<p>5.2.7. Cu Complex Functionalized PMOs</p>
<p>5.2.8. Rh Complex Functionalized PMO</p>
<p>5.2.9. Mo Complex Functionalized PMOs</p>
5.2.10. Sc Complex Functionalized PMO<p></p>
<p>5.2.11. Ti Complex Functionalized PMOs</p>
<p>5.2.12. Fe, Cu, Sn Complex Functionalized PMOs</p>
<p>5.2.13. Ferrocene Complex Functionalized PMOs</p>
5.2.14. WO<sub>4</sub><sup>2-</sup> Complex Functionalized PMO<p></p>
<p>5.2.15. Bimetal Complex Functionalized PMOs</p>
<p>5.4. Metal Nanoparticles Supported PMOs</p>5.4.1. Au Nanoparticles Supported PMOs<p>5.4.2. Pt Nanoparticles Supported PMOs</p>
<p>5.4.3. Pd Nanoparticles Supported PMOs</p>
<p>5.4.4. Other Au, Pt, Pd Nanoparticles Supported PMOs</p>
5.4.5. Pt-Pd Bi-metal Nanoparticles Supported PMOs<p></p>
<p>5.4.6. Pt, IrO<sub>x</sub> Nanoparticles Supported PMOs</p>
<p>5.4.7. Phosphomolybdic Acid Nanoparticles Supported PMOs</p>
<p>Chapter 6. PMOs as Hosts for Drug and Biomolecules</p><p></p>
<p>6.1. PMOs for Drug Delivery System</p>
<p>6.1.1. PMO as Nanocarrier</p>
<p>6.1.2. Hollow PMO</p>
6.1.3. PMO with Gatekeeper<p></p>
<p>6.2. PMOs for Protein/Gene Delivery System</p><p></p>
<p>6.3. Biocompatibility of PMOs</p><p></p>Chapter 7. PMOs for Adsorption<p>7.1. Metal ions adsorption</p>
<p>7.1.1. Adsorption of Li<sup>+</sup> Ions Adsorption</p>
<p>7.2.2. Adsorption of Co<sup>2+</sup> Ions</p>
<p>7.1.3. Adsorption of Hg<sup>2+</sup>, Pb<sup>2+</sup>, Cd<sup>2+</sup>, and Ag<sup>2+</sup> Ions</p>
<p>7.2. Pollutant (Organic Molecules) Adsorption</p>
<p>7.3. Adsorption of Biomolecules</p>
<p>7.3.1. Adsorption of Protein</p>
<p>7-3-2. Adsorption of Enzyme</p>
<p>7.3.3. Amino Acids Adsorption and Cell Adhesion</p>
<p>Chapter 8. PMOs for Separation</p>
<p>8.1. Gas Adsorption/Separation</p>
<p>8.2. Chromatographic Phases</p>
<p>Chapter 9. Electronic and Optical Applications</p>
<p>9.1. Electronic Devices</p>
<p>9.2. Low-k PMO Films</p>
<p>9.3. Optical Applications</p>
<p>9.3.1. Light Harvesting</p>
<p>9.3.2. Photoluminescence</p>
<p>9.3.3. Sensing and Imprinting</p>
<p>Chapter 10. PMOs for Other Advanced Applications</p>
<p>10.1. Ion Exchangers</p>
<p>10.2. Superhydrophilic Antireflective Coating</p>
<p>10.3. Bioactive Composites</p>
<p>10.4. Refolding of Proteins</p><p></p>
<p>10-5. Bioimaging</p>
<p>Chapter 11. Summary and Future Outlooks</p>
Rubrieken
- advisering
- algemeen management
- coaching en trainen
- communicatie en media
- economie
- financieel management
- inkoop en logistiek
- internet en social media
- it-management / ict
- juridisch
- leiderschap
- marketing
- mens en maatschappij
- non-profit
- ondernemen
- organisatiekunde
- personal finance
- personeelsmanagement
- persoonlijke effectiviteit
- projectmanagement
- psychologie
- reclame en verkoop
- strategisch management
- verandermanagement
- werk en loopbaan